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The interrelation between the well-known non-Markovian master equation 
and the new memoryless one used in the previous paper is clarified on the 
basis of damping theory. The latter equation is generalized to include 
cases in which the Hamiltonian or the Liouvillian is a random function of 
time, and is written in a form feasible for perturbational analysis. Thus, the 
existing stochastic theory in which those cases mentioned above are dis- 
cussed is equipped with a more tractable basic equation. Two problems 
discussed in the previous paper, i.e., the random frequency modulation 
of a quantal oscillator and the Brownian motion of a spin, are treated from 
the viewpoint of the stochastic theory without such explicit consideration 
of external reservoirs as was taken in the previous paper. 
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1. I N T R O D U C T I O N  

D a m p i n g  theory  was long known  as involving a non-Markovian master  
equat ion.  <1~ The  m e m o r y  te rm in this  equa t ion  was o f  great  interest ,  and  it 
was believed tha t  the m e m o r y  effect would  be inevitable,  unti l  T o k u y a m a  
and  Mor i  <2~ showed the poss ib i l i ty  o f  a memoryless  maste r  equa t ion  3 by  
a very compl ica ted  and  seemingly a rb i t r a ry  manipu la t ion .  I t  was desired 
to  s implify the me thod  o f  der iva t ion  o f  the T o k u y a m a - M o r i  equa t ion  and  
also to  clarify the in ter re la t ionship  between the la t te r  equa t ion  and  da mp ing  
theory .  

In  a previous  paper ,  t4~ we succeeded in der iv ing by  a very s imple me thod  
a new expression for  a memoryless  mas te r  equat ion ,  which was shown to be 
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equivalent to the Tokuyama-Mori  equation. As was mentioned in that 
paper, this method of derivation should be intimately related to damping 
theory. The first aim of the present paper is to give the derivation concerned 
in such a way as to show that the new memoryless equation is in fact an 
improved solution of the damping theory, or, in other words, is obtained 
as the result of a renormalization of the memory effect. 

Although in that paper the new master equation was successfully ap- 
plied to two examples of a system in contact with a heat reservoir, i.e., the 
Brownian motion of a quantal oscillator and that of a spin, it is more con- 
venient in practical applications to introduce random forces acting upon a 
system than to consider explicit interactions with a reservoir. This is the 
well-known method of the stochastic LiouviIle equation formulated by Kubo 
and applied by him in the stochastic theory of the spectral line shape/5~ If  
our method of deriving the memoryless master equation could be generalized 
so as to be applicable to a system having a stochastic or time-dependent 
Hamiltonian, the whole wealth of the stochastic theory of the line shape 
would be attained on the basis of a more tractable and powerful memory- 
less master equation. This generalization is the second aim of the present 
paper. 

In Section 2 we consider a system having a time-independent Hamil- 
tonian to show our damping-theoretical derivation of the memoryless 
master equation mentioned above. In Section 3 this method of derivation 
is generalized for a system represented by a stochastic Hamiltonian. As was 
done in the previous paper, the transformation of our generalized memory- 
less equation into the form useful for perturbational expansion is also done 
in this section. The resulting expression is slightly complicated compared 
with that given in the previous paper because of the appearance of ordered 
exponentials. In Section 4 our master equation is applied to the stochastic 
versions of two examples discussed in the previous paper, i.e., the Brownian 
motion of a quantal oscillator and that of  a spin. As in the previous paper, 
the transcription into the phase-space c-number language is performed for 
these examples, and the resulting equations are compared with those given 
in the Kubo line shape theory. Finally, in Section 5 we give a few remarks. 
We use units where h = 1. 

2. THE  D A M P I N G - T H E O R E T I C A L  D E R I V A T I O N  
OF THE M E M O R Y L E S S  E Q U A T I O N  OF M O T I O N  
FOR A R E D U C E D  D E N S I T Y  M A T R I X  

Let us consider a system having a time-independent Hamiltonian ~ .  
Its time evolution is governed by the quantal Liouville equation 

W(t) = - i [ ~ ,  W(t)] -= - iLW(t)  (1) 
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where L denotes the Liouvillian corresponding to ~ ,  and W ( t )  is the density 
matrix of the system. Irrelevant information about the system is eliminated 
by virtue of a t ime-independent  projection operator ~, and relevant informa- 
tion is assumed to be given by the projected density matrix ~ W ( t ) .  We 
want to derive an equation of motion for this ~ W ( t ) .  This is done by the 
method of damping theory. 

On multiplying Eq. (1) by ~ or ~ = 1 - ~, we obtain the following 
coupled equations: 

~ V V ( t )  = - i ~ L ~  W ( t )  - i ~ L ~  W ( t )  (2a) 

.~lYV(t) = - i . ~ L ~ W ( t )  - i .~L~ W ( t )  (2b) 

The second equation (2b) can be integrated to give 

f2 ~ W ( t )  = - e - ~ L ~ i ~ L ~ W ( t  - ,)d~- + e - ~ L t ~ W ( O )  (3) 

In the conventional treatment, (1) we insert this expression for ~ . W ( t )  into 
the last term of Eq. (2a) and obtain the well-known non-Markovian equa- 
tion 

f; ~l /V( t )  = - i ~ L ~ W ( t )  - ~ L e - ~ a L ~ L ~ W ( t  - r) dr 

- i ~ L e - ' a u ~  W(O) (4) 

In order to derive our memoryless equation, we first eliminate the memory 
in the time-integral term of Eq. (3) by making use of the solution of the 
original equation (1) in the form 

W ( t  - ~-) = e 'L, W ( t )  (5) 

Thus we can reduce Eq. (3) into a memoryless form: 

f2 .~ W ( t )  = - e-~c~i~L~e~L~ d-r. ( ~  + .~) W ( t )  

+ e-'aLt~ W(0) (6) 

This equation is again an equation for ~W(t) ,  which we should solve. By 
this procedure, we perform the renormalization of the memory effect. Col- 
lecting terms containing .~ W ( t )  on the left-hand side, we obtain 

f ( t ) . ~  W ( t )  = {1 - f ( t ) J ~ W ( t )  + e-~ar~t.~ W(O) (7) 

where we have defined 

f2 f ( t )  = 1 + e-iar'~i~I_~eiL~ dr  

= ~ + e-~aLt~e~Zt (8) 
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The last expression for f ( t )  is nothing else than the one in the pre- 
vious paperJ ~> Introducing the inverse o f f ( t ) ,  

O(t) = [f(t)]  -~ (9) 

we find the new expression for .~ W(t) in terms of ~ W ( t )  and -~ W(0): 

-~W(t) = { 0 ( t ) -  1 } ~ W ( t ) +  O(t)e-'azt.~W(O) (10) 

Substituting this expression into Eq. (2a), we obtain our desired equation: 

~ W ( t )  = - i ~ L ~ W ( t )  - i~L{O(t) - 1}s 

- i~LO(t)e-~aLt~ W(O) (11) 

which is the one derived and proved to be equivalent to the Tokuyama-  
Mori equation in the previous paper. 

It should be remarked that, when we use the term "memoryless," we 
are neglecting in Eq. (11) the last term, which is known as the destruction 
term because it describes the destruction process of initial irrelevant informa- 
tion contained in -~ W(0). In the following sections we shall assume the usual 
initial condition 

W(0) = 0 (12) 

for simplicity. 

3. G E N E R A L I Z A T I O N  TO S T O C H A S T I C  H A M I L T O N I A N  

As was stated in the introduction, in various applications in physics 
it is sometimes necessary to incorporate the stochastic nature of a problem 
into our theory. We can discuss phenomena more easily by regarding inter- 
actions of a system with its surroundings as those induced by random forces 
acting on the system. This approximation leads to a stochastic Hamiltonian, 
which is a random function of time. Thus we assume a Hamiltonian of the 
form 

~ ( t )  = ~ + ~ ( t )  (13) 

where 3(r is the Hamiltonian of the system alone and ~ ( t )  represents random 
external perturbations. We do not consider the origin of the randomness, i.e., 
the motion of the surroundings, explicitly. The true quantal Liouville equa- 
tion is replaced by a stochastic quantal Liouville equation: 

W(t) = -i[ar -t- ~ ( t ) ,  W(t)] = - i L ( t ) W ( t )  (14) 

where L(t) = Lo + Ll(t)  is the corresponding stochastic Liouvillian. The 
projection operator ~, which eliminates irrelevant information about the 
surroundings, is now replaced by an average over a stochastic process ~ ( t ) .  
We denote this by 

~ X  = (X)8  (15) 
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where ( ' " )8  represents that average. The idempotent property ~@2 = ~ is 
automatically satisfied by the condition (158 = 1. 

Since the projection operator is time-independent, we obtain at once 
from Eq. (14) the following coupled equations: 

~ W ( t )  = - i~L( t )~  W(t) - i~L( t )~  W(t) (16a) 

~W(t )  = - i ~ L ( t ) ~ W ( t )  - i~L(t)~ W(t) (16b) 

as before. The second equation can be solved by making use of the ordered 
exponential 

~(t, r ) =  e x p ~ [ - i ~ f [ L ( s )  ds] (17) 

where we use the chronological ordering. The solution is 

J2 ~ w ( t )  = - ~r , ) i ~ I 4 , ) ~ w ( , - )  d ,  + fC(t, 0)~W(0) (18) 

By introducing another ordered exponential 

[c ] G(t, r) = exp.  i L(s) ds (19) 

we can solve Eq. (14) to obtain 

w(,-)  = G(t, - dW( t )  (2O) 

Substituting this expression into Eq. (18), we arrive at the equation for 
.~w(t): 

f2 .~ W(t) = - fc(t, T)i~LO-)~G(t, "d d.~. (~  + 2) W(t) + fg(t, 0)2 W(O) 

which can be rewritten as before in the form 

f ( t ) ~ W ( t )  = {1 - f ( t ) } ~ W ( t )  + f~(t, O).~W(O) 

where we have introduced 

J; f ( t )  = 1 + fg(t, ~)i.~L(.~)~G(t, "d d.~ (21) 

Denoting the inverse o f f ( t )  as O(t), we obtain 

.~W(t) = {O(t) - 1}~W(t) + O(t)fY(t, O)-~W(O) 

which gives in turn the desired equation 

14z(t) = - i ~ L ( t ) ~  W(t) - i~L(t){O(t) - I }~  W(t) 

- i~L(t)O(t)fg(t, 0).~ W(O) (22) 
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This is the generalization of the previous equation (11) for the case of a 
time-dependent Hamiltonian. 

We can easily rewrite Eq. (22) into the form corresponding to that 
proposed by Tokuyama and Mori in the case of a time-independent Hamil- 
tonian, by making use of the relation 

f O(t) - 1 = 20 O(r) dr = - O(r)f(r)O(r) dr (23) 

The resulting expression is 

~I4z(t) . . . .  i ~ L ( t ) ~ W ( t )  + i~L(t)O(r)f(r)O(r)  dr ~ W ( t )  

- i~L(t)O(t)fg(t,  0).~ W(0) (24) 

However, it seems that this expression has no particular advantage over the 
previous one, (22). 

Now let us proceed to transform our expression (22) into a form con- 
venient for the perturbational expansion. This transformation can be per- 
formed step by step in parallel with that done in the previous paper. First, 
for the propagator (19) we have 

G(t, r) = Uo(r)R(t, "c)Uo(- t) (25) 

where Uo(t) denotes the free propagator 

Uo(t) = e-~Zo t (26) 

and R(t, ~) is the propagator in the interaction picture 

ir ] R(t, r) = exp_, i U o ( - s ) L ~ ( - s ) U o ( s )  ds (27) 
L ~ 

Similarly, for the projected propagator (17) we obtain 

fY(t, r) = Vo(t)S(t ,  ~-)Vo(-~-) (28) 

where we have put 

and 

Vo(t) --- e-i~Lo ~t (29) 

S(t ,  r) = exp._ - i V o ( -  s).~Ll(s).~ Vo(s) ds 

Since our projection operator (15) commutes with Lo: 

~Lo  = Lo~, and thus .2Lo = Lo.~ 

(3o) 

(31) 
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the free propagator Uo(t) also commutes with ~ and ~, and hence we can 
write Vo(t) in the form 

Vo(t) = ~ + -~Uo(t)~ (32) 

This gives in turn the expression 

N(t, , )~ = ~ exp._ - i  ~L ( s )~  ds 

= ~Uo(t)S( t ,  , ) U o ( - , )  (33) 

The expressions (25) and (33) have already been ordered in the chronological 
form. Therefore the expression of S(t ,  r) is simplified to 

[fj  ] S(t,  r) = exp._ - i  ~ , U o ( - s ) L l ( s ) g ( s ) ~  ds (34) 

Thus we arrive at the desired expression for f ( t ) :  

f ( t )  = 1 + E(t) (35) 

where we have defined 

Y~(t) = Uo(t)S(t, r )Uo( -  , ) ~ i L I ( r ) ~ U o ( -  t)R(t,  ,)Uo(r) dr (36) 

Assuming the initial condition (12) and using the explicit notation of the 
projection operator (15), we obtain for the reduced density matrix 

p(t) = ~ W ( t )  = ( W ( t ) ) ~  (37) 

the equation 

~(t) = - i ( L o  + (Ll( t ) )~)p( t )  - ~F(t)p(t) (38) 

where we have defined 

\ 
~F(t) = (iL(t){O(t) - 1})8 = - i  L(t)  1 TZ ' ( t ) , /B  (39) 

If  we retain terms up to O(L~2(t)) in accord with the assumption ofa  Gaussian 
process, we may approximate the operator (39) as 

~F(t) = (Ll(t)-~ Uo(r)Ll(t - , )  Uo( -  r))B dz (40) 

In the next section we investigate two examples of relaxation phenomena 
based on this approximation, and show its usefulness. 
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4. S I M P L E  A P P L I C A T I O N S  

In this section we assume that external random forces vanish on the 
average: 

(LI(t))B = 0 (41) 

Then Eq. (38) for the reduced density matrix within the approximation (40) 
takes the form 

f i ( t )= - iLop( t )+{f ] ( [e - 'X 'o~a~( t - r )e~o~p( t ) ,~"~( t ) ] )Bdr+H.c .}  

(42) 

Let us apply this equation to the following two examples. 

Example (i). Random Frequency and Amplitude Modulations. A quantal 
oscillator with modulated frequency and amplitude may be represented by 
the stochastic Hamiltonian (13), in which 

o~o = e%b*b, ~ ( t )  = o)l(t)b~b + g{B(t)b t + B*(t)b} (43) 

oJl(t) and B(t) are independent, stationary, random c-number functions of 
time. g is a coupling constant. Obviously, Eq. (42) becomes 

t~(t) = -- ioJo[btb, p(t)] + {�89 b'b] 

+ r b] + @*(t)[bo(t), b*] + H.c.} (44) 

where the following functions are defined: 

f2 C(t) = 2 (t - ,)(cot(,r)~o~(0))~ dT (45a) 

f: r = g2 (B*(~-)B(O))e-~% ~ dr (45b) 

We can write Eq. (44) in the c-number language by making use of the anti- 
normal mapping rule <6~: 

{ (~ 8 ) 1  ~7(t)(~ a + (3)  P(%~*,t)= ion0 ~ - ~ *  +~ ~ *  

�9 (~ a~ ) 1 C(t) ~2 - ~ ~ + ~ ' ~ * ~  

~2 a2 ) 
+ (7(t) ~ a'c, + [r + 6*(t)] ~ P(c~, ~*, t) (46) 
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Furthermore, if we introduce the polar coordinates a = re ~, we can write 
this in a more familiar form: 

{ 0 l l d , ( t  ) + r  r 02 
= + J 

4r Or r P (47) 

We see from Eq. (47) that the so-called nonadiabatic effect occurs due to 
the amplitude modulation, in addition to the adiabatic effect represented 
by the term including C'(t). In the narrowing limit, i.e., the long-time ap- 
proximation, t -+  +oo, Eq. (47) reduces to the one obtained by Kubo for 
a "classical model of resonating spins. ''(5~ Moreover, if we drop the non- 
adiabatic term by putting g = 0, Eq. (47) coincides with Kubo's equation 
for a classical oscillator with random frequency modulation/5) as was dis- 
cussed in the previous paper. (4~ 

Example (ii). A Spin System Under Random Perturbations. A spin with 
a randomly modulated, resonating Larmor frequency and under the in- 
fluence of perpendicular random fields can be described by the stochastic 
Hamiltonian (13), in which 

~o  = co0S, (48) 

o~(t)  = gR(t)-S (49) 

Here R(t) is a random external field acting upon the spin S. The longitudinal 
component R~(t) induces the frequency modulation, while the perpendicular 
components Rx(t) and Ry(t) give rise to the nonadiabatic effects. 

We obtain from Eq. (42) the equation 

1 
fi(t) = --i{I + 3(t)}oJo[Sz, p(t)] + 2~o(t){[S~p(t), S~] + H.c.} 

+ 2r@) {[Sxp(t), Sx] + [S~p(t), S~] + H.c.} (50) 

where we have assumed rotational symmetry around the z axis and intro- 
duced 

8(t) = (g2/oj0) (R,:(r)Rx(O))~ sin(o~or) dr (51a) 

s 1~[2to(t)] = g2 (R~(~-)R~(0))B d~ (51b) 

and 

s 1/[2~-~(t)l = g2 (R~(r)R~(O))B cos(~oo,) dr (51c) 
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The c-number equivalent of  Eq. (50) can be ,found by virtue of  the 
generalized phase-space method for spin operator <7) as 

L~2 Lx2 + Lv2\-  (52) 
2to(t) 27-~t) J /~ 

1 ) 1 1 ] a  2 
"c,(t) + "cl(t) sin = ,~ a~o = 

P = { - i l l  + a(t)]o~oL. 

or in the polar coordinate system as 

/O= _[1 + 3(t)]o~ 0 + ~  ,co(t) 

+ 2~-~(t-----) sin-----~ av a sin ~ F (53) 

Since the unit spin vector in the c-number space is given by 

m = (sin ~ cos % sin ,~ sin % cos u") 

the quantity sin u ~ in Eq. (53) is the projection of m onto the xy plane, and 
corresponds to r in example (i). We see that phase diffusion occurs due to 
the nonadiabatic effect in addition to the usual adiabatic broadening. 

Equation (50) or Eq. (53) leads to the Bloch equation of the form 

d 1 
dt (S• = _+ i{i + 8(t)}oJo(S~(t)) Ts(t) (S• (54a) 

d 1 
d~ (S~(t)) = - (t) (S~(t)) (54b) 

where the relaxation-time functions Ti(t) and Ts(t) are defined as (m 

1 1 f~@(t) r@(t)} r l ( t )  = , l(t) ,  r=(t) = ~ + (55) 

We shall not discuss Eq. (54b) because it does not give the correct equilibrium 
value of  (S~) except in the high-temperature limit (see Section 5). We can 
easily solve Eq. (54a): 

= + ' f0 T---~] (S-(0)) (56) (S_(t)) exp[- ioJo{t  f la(z)a'c)- t a" 

Or, more explicitly, if we assume, for example, force correlations of the 
form 

(R~('C)R~(0))~ = Ajl= exp(--ylll'cl), (Ylt = 1~'co,) (57a) 

(Rx('c)Rx(O))B = A• exp(-v•  (y• = 1/%~) (57b) 
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we obtain the expression 

(S_(t)) = exp - i  1 + - - - -  ~Jwol 

x ((~,• _ oj02)[exp(_),at)] sin o~ot 

+ 2O~o~,~{[exp(-~,~t)] cos ~oot - 1}) 

g2&• l ~ t 
- ~ g2Atlzr~ll + oJ0 ~ T 71 ----2] 

+ 
( g Z ~ l l % l l )  2 

2g2A•177 
x [1 - exp(-'),llt)] + (o9o ~ + ~,z2)2 [exp(-~,lt)] sin ~o0t 

-I, I.t'~O - -  Z J- l + ~ - j - ~  y-i-~,}~ {[exp(-~,~t)] cos o~ot - I}j(S_(O)) 

(58) 

This can be used to discuss not only the long-time, but also the short-time 
behavior. It will be discussed in a separate paper (see Section 5). 

5. CONCLUDING REMARKS 

We have succeeded in generalizing the derivation of our memoryless 
master equation for the case of  a time-dependent Hamiltonian, and applied 
the master equation in its first Born approximation form to two examples 
which correspond to those discussed in the previous paper. (~ 

We started from the stochastic Liouville equation (14) and the time- 
independent projection operator (15), and successfully reconstructed the basic 
equations for the stochastic theory of spectral line shape formulated by 
Kubo. ~ In order to proceed further, we have to extract from these equations 
various interesting aspects, such as those the stochastic theory has given. 
This extraction can be done by applying the method of time scaling, but 
that will be performed in another paper. 

The stochastic theory has, by nature, a phenomenological character. 
The basic equations thus derived are not without a flaw, i.e., the well-known 
loss of some temperature effects. In order to remedy this, we must introduce 
frictional forces or the like, which cannot be incorporated into the Hamit- 
tonian formalism: The introduction of dissipation functions is necessary. 
Reliable research in this direction would be difficult, especially if it is formu- 
lated quantum mechanically, although in the classical formulation Kubo 
and Hashitsume (8~ have already given an example for the Brownian motion 
of a spin. 

However, except for the difficulty just mentioned, the stochastic theory 
is considered to be useful in many practical applications in physics, and it is 
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hoped that our new master equation will find various applications. In the 
Appendix we give a simple example for which our new formulation provides 
an essential improvement over the conventional one with memory effect. 

A P P E N D I X .  K U B O ' S  M O D E L  OF F R E Q U E N C Y  
M O D U L A T I O N  

As the simplest mathematically solvable example, let us consider Kubo's 
oscillator model of frequency modulation referred to in Section 3 of our 
previous paper. The complex coordinate x(t) of this oscillator is assumed 
to obey the stochastic equation of motion 

d x(t) = i{wo + goJl(t)}x(t) (A.1) 
dt 

where we have introduced a coupling constant g explicitly, w0 is a fixed 
characteristic frequency, while col(t) is supposed to be a stationary Gaussian 
process with vanishing average. This equation of motion is not the Liouville 
equation, but obviously it has the same structure as the latter: x(t) corre- 
sponds to W(t) of Eq. (14), oJ o to - L o ,  and gwl(t) to -Lz(t),  i.e., Eq. 
(A.1) may be regarded as the mathematically simplest case with commuting 
Lo and L~(t). The projection operator (15) in this case means to take the 
average over the process oJ~(t). Our assumption on this process is expressed 
by the characteristic functionaF s) 

where 

(P(T1 -- ~'2) = (Wl(rl)CO~(~'2))B (A.3) 

We are interested only in the averaged or projected coordinate 

( }) ~x(t)  = (x(t))B = [exp(i~o0t)] exp ig col('r ) dr x(0) (A.4) 

Here we have assumed that the initial value x(0) is fixed or independent of 
the process oJz(t), i.e. 

.~x(0) = (l - ~)x(0) = 0 (A.5) 

I f  we put ~(r) = 1 in Eq. (A.2), we obtain at once 

~x(t)  = ex~io~ot -- g2~  (t - T)aP(,) d~-)x(O) (A.6) 
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which is the exact solution of the projected equation of motion 

d tio2o g2jl ~(r)dr).~x(t) (1.7) ~ x ( t )  = - 

Before applying our method we have to check the commutability of 
d/dt and ~. Since we know d/dt.~ by Eq, (A.7), we need only to calculate 
~. d/dt or to prove the relation 

(igwl(t)x(t))B = _g2 ~b(r) dr ~x(t) (A.8) 

According to Eq. (A.2), we have 

( ,g%(t )  exp(igf] % ( r ) d r ) )  

= lim 2 8 ( (  ~ ) )  r ~ - ~  exp ig r162 

x (exp{ ig  Jot %(r)g(r)dr) 

and hence the relation (A.8) 
Equation (38) gives 

d ~x(t) = io2o~x(t) - tF(t)Px(t) (A.9) dt 

with the operator 

where 

y,(t) \ 
~'(t) = g io~(t) I T Z(t) lIB (A.IO) 

E(t) = - g  dr fY(t, r)i~oJl(r)gZG(t, r) (A.1 la) 

~(t, ,) = e'~o ~'-')s(t, r ) a  (A. 1 lb) 

G(t, r) = e-~%(~-'R(t, r) (A.1 lc) 

If we expand Z(t), S(t, r), and R(t, r) in powers of the coupling constant g, 
we have 

Z(t) = gEl(t) + g2Z2(t) + gaYa(t) +--- (A.12) 
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where 

~:~(t) = - fo  t 

Z~(t) = - f l  

Za(t) = - f ~  

dr  i ~ o ~ ( r ) ~  

dr  S~(t, r ) i ~ o ~ ( r ) ~  -- d~ i ~ o ~ ( r ) ~ R ~ ( t ,  r)  

- d r  i .~wl(-r)~R2(t ,  -r) 

and so on. Substituting Eq. (A.12) into expression (A.10), we obtain the 
expansion of W(t): 

~F(t) = g2W2(t ) + g ~ ( t )  + ... (A.13) 

The odd-power terms vanish because of the assumption (oJl(t))~ = 0. In 
this expression we find that the second-order term 

f; ~F2(t) = ( io21(t)El( t ) )B = dr qb(,) (A.14a) 

already gives  the e x a c t  result  (A.7) .  Thus the higher order terms should all 
vanish. This is due to our assumption of a Gaussian process. Presumably we 
need not prove this, but we will check it term by term. We do it here only 
for the fourth-order term, 

~ 4 ( t )  = ( io~l( t)(Za(t)  -- Z2(t)Y~(t)})B (A.14b) 

The first part on the right-hand side is explicitly written as 

( ioJ l ( t )Za( t ) )B  

f;f*(" = -- dr  dt l  dt2 (ieo~(t)i~co~(tl)i-~co~(t2)i~oJ~(r))B 

f2 f, r - �89 dr  <io~a(t)io~t(t)) B dt~ tit2 (io~(t~)ieo~(t2))B 

f; f/ f" = - dr  dt l  dt~ { ~ ( t  - t~,)~(t~ - r3) + ~ ( t  - r~)c~(t~ - t2)} 
~g 

f - � 8 9  dr  dt~ dt2 q~(t - r)q~(t~ - t2) 
,I 0 w~ 

and the second part as 

<iaJ~(t)E~(t)E~(t))~ = - d q  dt2 dta * ( t  - t~)qb(ta - t~) 
q 
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We can easily transform the integrals to get the same form 

(ioJ~(t)Y~3(t)>~ = @ol( t )Z2( t )Z l ( t )> ~ 

= - f j  d t z f o t l d t z f o ' 2 d t 3 { * ( t - t 2 ) c b ( t ~ - t a )  

+ 2~(t  - t3)q)(t~ - t2)} (A. 15) 

and hence we have proved that 

�9 ,(t) = 0 (a .  16) 

By the traditional damping theory, or from Eqs. (16a) and (18), we 
obtain the projected equation of motion with the memory effect 

fj dtd C x ( t )  = io>oD~X(t) - dr  X ( t  - r ) ~ x ( r )  (A.17) 

where the kernel is given by 

X ( t  - r) = g2(oJ~(t)fg(t, r)-~o~z(z)>B 

= g2X2(t - , )  + g4X~(t - r) + ... (A.18) 

Now the lowest order kernel is 

X 2 ( t -  r) = q ) ( t -  r)e'% ('-~> (A.19) 

and thus our exact  equation (A.7) is not reached within this approximation. 
We must proceed to higher order terms to obtain a good approximation, 
except in the narrowing limit e ~ 0 with t/G fixed, where we have introduced 
parameters 

ro = (I/A 2) dr qb(r), 1/~', = gZAZr, (A.20a) ZX = <,o1~>~/~, 

and 

c~ = g A~-~ (A.20b) 

gA gives the mean amplitude of frequency modulation, ~'c is the coherence 
time of modulation, rr is the relaxation time of the coordinate x ( t )  in the 
narrowing limit, and c~ is the parameter characterizing the intensity and speed 
of modulation, as was discussed by Kubo in detailJ 5> 

To see the situation more explicitly, let us further assume that the pro- 
cess o)l(t) is Markovian, i.e., 

(I)(~') = A2e-I,IJ~c (A.21) 
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Then the exact equation (A.7) or the second-order equation with W2(t), 
(A. 14a), and its exact solution (A.6) become, respectively, 

- t ' } d ~x( t )  = ioJo - --  (1 - e-t/~) ~x( t )  (A.22) 
dt "re 

and 

~ x ( t ) = e x p t i ~ o o t - ~ 2 ( t  + e - t / c o - 1 ) t x ( O  ) \ %  (A.23) 

On the other hand, the second-order equation obtained from the non- 
Markovian equation (A. 17) with the Born approximation kernel (A.19) is 

d ~x(t)  = io~o~X(t) - (gA)2 f] dr e x p t ( k O o -  1 ) ( t - r ) ) ~ x ( r )  

(A.24) 
and has the solution 

exp(i~176 f 4~2)1/2] ( [1 - ( 1 -  4~2)~2]t 
~x( t )  = 2 0  ~ 4---a )~, 2 _[1 + (1 - exp_ - 2-~rc ] 

For ~ -+ 0 with t/r r fixed, we have 

~x( t )  ~ [exp(io~ot)]{(1 + c~ 2) exp(-t/-r~) - ~2 exp[-(c~ -2 - 1)t/,r]}x(O) 
(A.26) 

The solution (A.25) is quite different for small t ~< rc from the exact 
solution (A.23), which under that condition has the form (s) 

expfi~o0t (gA)2 t 2 + ...lx(0) (A.27) ~x( t )  
L 2 J 

This suggests the danger, in this model at least, of investigating the memory 
effect by using the truncated non-Markovian equation of motion. Only in 
the narrowing limit ~-c << t ~ re may we expect the solution (A.25) or (A.26) 
to be in accord with the exact one, both giving (5~ 

~x( t )  ,,~ e~~ (A.28) 
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